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SCATTERING BY CRACKS BENEATH FLUID–SOLID
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The scattering of incident plane elastic, or fluid, body waves and interfacial waves by
an arbitrarily orientated subsurface crack is considered. The crack lies in an infinite elastic
half-space that is coupled to an overlying fluid half-space. Material parameters relevant for
water–metal and water–rock combinations are taken and far field scattering patterns are
given; these demonstrate beam formation along critical angles. For light, or moderate, fluid
coupling, it is shown that the beams form along different critical angles depending upon
the magnitude of the coupling.

In addition, reciprocity relations relating the far field scattering coefficients viewed along
an angle u, and generated by one type of plane wave incident along f, to the scattering
coefficient viewed along f, generated by another plane wave incident along u, are found.
Reciprocity relations involving interfacial waves are also given.

Power flow theorems are derived; these relate the time averaged scattered power to a
combination of far field scattering coefficients. This is used to determine the proportion
of scattered power converted into the different types of scattered wave. The reciprocity and
power flow theorems provide a powerful consistency check upon the numerical accuracy
of the results.

The boundary value problem is recast as a system of coupled integro-differential
equations for the unknown jump in displacement across the crack faces. These integral
equations are solved in an efficient and fast numerical manner by performing the
integrations over the crack faces analytically, thus reducing the computational effort
substantially.
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1. INTRODUCTION

A crack that lies beneath the surface of an elastic solid has a considerable influence upon
the failure characteristics of the solid. Thus it is important to detect, and accurately
determine the position of, cracks. The non-destructive testing of a solid to detect such flaws
is often undertaken with the solid immersed in a fluid. The solid is then imaged by waves
incident from the fluid. For line source excitation surface waves are generated that impinge
upon defects near the surface, giving a strong signal. Alternatively, the material can be
imaged using either incident surface waves or elastic body waves. The aim of this paper
is to provide a mathematical analysis of the underlying physical problem and extract all
the quantities of physical interest in an efficient and accurate manner. A subsurface crack
is imaged by incident plane harmonic compressional waves from the fluid, or
compressional and shear waves from the solid. In addition, incident interfacial waves are
also considered. The far field responses are found.
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In brief, the dominant far field responses that are generated are cylindrical shear or
compressional body waves in the solid and a cylindrical compressional wave in the fluid.
In addition, a Stoneley wave, often called the Schölte wave, is generated, and this is an
unattenuated interfacial wave that decays exponentially with depth in both materials. In
the absence of the overlying fluid the corresponding unattenuated surface wave is a
Rayleigh wave. One interesting aspect is that the limiting process as the fluid coupling tends
to zero is non-uniform; that is, the Rayleigh wave is not related to the Schölte wave even
when the coupling tends to zero. In fact, in this limit the wave speed of the Schölte wave
is typically slightly less than the compressional wave speed of the fluid. In the limit as the
coupling tends to zero, one can unambiguously identify a leaky Rayleigh wave. This is a
perturbation of the usual Rayleigh wave that now decays exponentially with distance along
the interface from its source of excitation. The light fluid loading limit is important for
applications; hence there will be an emphasis upon results associated with this limit.

There are also head waves generated in both the fluid and solid that decay faster than
the cylindrical body waves; these head waves are generated as the cylindrical body waves
do not satisfy the interfacial boundary conditions correctly. If the wave speed of the fluid
is less than the shear wave speed of the solid, then the head waves generated by the
acoustic cylindrical wave in the solid are evanescent. It will be implicitly assumed here that
the shear wave speed of the solid is greater than the compressional wave speed of the
fluid. This is usually the case: exceptions are combinations such as plastic/water interfaces.
The analysis presented does not depend upon this assumption. A schematic, given in
Figure 1, shows the wavefronts.

In the absence of the fluid, several scattering problems of this type have been treated
by, for instance, Mendelsohn et al. [1] for surface breaking perpendicular cracks,
Achenbach et al. [2] for subsurface parallel cracks, Brind and Achenbach [3] for subsurface

Figure 1. A schematic showing the scattered wavefronts in the far field for the situation in which the
compressional wave speed in the fluid is less than the shear wave speed in the solid. In the right hand side of
the schematic the leaky Rayleigh response is shown by the dashed line.
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perpendicular cracks, and Van der Hijden and Neerhoff [4] for subsurface cracks of
arbitrary orientation. For parallel cracks interesting near surface resonances in the stress
intensity factors and transmission/reflection coefficients for Rayleigh waves (Keer et al. [5],
Van der Hijden and Neerhoff [6]) were detected due to Lamb waves trapped between the
crack and the interface.

With the addition of fluid loading there are fewer analyses: some exceptions are
Gracewski and Bogy [7] and Ahn et al. [8]. The former treat a more general case in at
least one sense, that of a subsurface parallel crack in a material with an elastic layer and
substrate. The crack lies at the interface of the layer and substrate; and the material
constants are chosen to prohibit any oscillatory singularities at the crack tips. The
numerical procedure adopted is less efficient than that taken here and the results presented
are limited; indeed, the authors stress that the amount of computer time required is not
inconsequential. Reference [8] treats a surface breaking crack using boundary element
methods incorporating the full space elastic Green function, and hence requiring elements
both along the surface and along the crack faces. Boundary element methods do, however,
have an additional flexibility in that finite domains can be treated; the analysis in this paper
is restricted to unbounded domains.

In a series of papers, Neerhoff [9], Neerhoff and Van der Hijden [10], Van der Hijden
and Neerhoff [4, 6, 11] considered several wave–crack interaction problems in either an
elastic half-space or an infinite body. Their approach had several advantages over other
contemporaneous works: rapid and accurate numerical evaluation, simple extensions
allowing arbitrary crack orientation, elegant expressions for the stress intensity factors, far
field directivities, and transmission/reflection coefficients for Rayleigh waves. Thus the
method advocated in reference [4] is adopted in the present paper. By performing various
integrations along the crack surfaces analytically, rather than numerically as in the
standard approach to such problems, adopted in, for instance, reference [7], leads to fast
and accurate numerical solutions. In turn, this enables a more detailed examination of the
results than is convenient using the standard approach; in particular, the form of the
eigensolutions adopted leads in a natural way to elegant expressions for far field scattering
coefficients and stress intensity factors. For the fluid–solid problems the scattered far field
within the fluid is of considerable interest; this paper is an extension of the approach
adopted by Van der Hijden and Neerhoff [4] to the fluid–solid situation.

In addition, reciprocity and power flow theorems are derived: these provide useful
consistency checks upon the numerical approach. Early authors such as Tan [12]
concentrated upon theorems for obstacles within an infinite elastic domain, and Neerhoff
[13] proved various theorems for obstacles within a half-space; these were extended to three
dimensions by Rogoff [15]. Here the additional difficulties of adding an overlying fluid are
incorporated, with the consequent changes that this introduces.

The plan of this paper is as follows: in section 2 the constitutive relations and crack
geometries are described. Using suitable Green functions, coupled integral equations are
formulated in section 3 for the scattering problems, and these are related to the fields within
the solid and fluid. The integral equations are solved in a semi-analytical fashion; results
are shown and discussed in section 4. In section 5, reciprocity and power flow theorems
are presented. Much of the analytical detail is relegated to the appendices.

2. CONSTITUTIVE RELATIONS

An isotropic, homogeneous elastic solid lies in the half-space x'3 q 0 and a compressible
fluid lies in x'3 Q 0. The responses of the two materials are coupled together through
continuity conditions along the interface x'3 =0; these conditions are continuity of normal



. . 346

stress and displacement. Time harmonic vibrations of frequency v are considered, and all
physical variables are assumed to have an e−ivt dependence: this is considered to be
understood and is suppressed henceforth.

The elastic material has Lamé constants l and m, and density r. The stresses, sij , are
related to the displacements, ui , via

sij = lokkdij +2moij , with the strains oij = 1
2(ui,j + uj,i ). (2.1)

The governing equations in the elastic solid are sij,j =−rv2ui . The elastic solid supports
compressional and shear waves with wave speeds cp and cs respectively. They are defined
as

c2
p =

(l+2m)
r

, c2
s =

m

r
.

The corresponding wavenumbers are kp and ks , defined as v/cp and v/cs ; the following
inequality is satisfied: ks q kp .

The compressible fluid in x'3 Q 0 is effectively an elastic material supporting no shear
stresses: thus sij = lfokkdij . The material has density rf and compressional modulus lf , and
supports a compressional wave with wave speed c2

0 = lf /rf .
In the absence of the fluid, a surface Rayleigh wave propagates with wave speed cr and

associated wavenumber kr ; kr q ks . It is also assumed here that kr Q k0. This is usually the
case and it ensures that the Rayleigh angle, to be defined later, is real; in this situation,
distinctive beam formation is possible along the Rayleigh angle within the fluid. With the
fluid present, the Schölte wave replaces the Rayleigh wave as the unattenuated interfacial
wave; the wave speed is csch and ksch q k0. The Schölte wave speed is given explicitly as an
integral in equation (D.15).

The assumption that the compressional wave speed of the fluid is less than the shear
wave speed of the solid implies that k0 q ks q kp .

During the analysis a coupling parameter o naturally occurs; it is defined as o= rfkp /rk0,
where kp , k0 are the wave speeds associated with compressional waves in the solid and fluid
respectively. The coupling parameter is the ratio of fluid and solid impedances relative to
the compressional waves and gives a measure of the coupling between fluid and solid
disturbances, typically with water as the coupling fluid: 0·05E oE 0·3. The limit when
o:0 is the light fluid loading limit; this is relevant for water–metal combinations. In this
limit, one might expect that ksch:kr ; however, this is not the case and ksch:k0, and the
Rayleigh wave speed is perturbed to include a small imaginary part that leads to the energy
leakage into the fluid and exponential decay with distance along the interface.

3. FORMULATION OF THE INTEGRAL EQUATIONS

The subsurface crack geometry and boundary conditions are shown in Figure 2; the
types of incident wave are shown in Figure 3. Two related Cartesian co-ordinate systems
are shown in Figure 2; one is the x'1 , x'3 system based upon the interface, and the other
is the x1, x3 system based upon the crack. The origin of the crack system is displaced a
distance d from that of the interfacial system and lies at the center of the crack. The crack
is of length 2a and =x1=Q a. The co-ordinate systems are related via a displacement and
rotation as x'1 = x1 cos u+ x3 sin u, x'3 =−x1 sin u+ x3 cos u+ d. The two co-ordinate
systems are used within the text. The notation u3, u3' is used to denote variables relative
to the different co-ordinate systems.

The crack is taken to be stress free, so that s13 = s33 =0 on x3 =0, =x1=Q a. Thus the
crack faces are assumed not to interact with each other: this is a viable assumption if we
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Figure 2. The co-ordinate system associated with the subsurface crack and the boundary conditions. The crack
is stress free and is shown by the solid line in the x1 direction.

are modelling an open crack of finite width. The stresses have the usual inverse square root
dependence upon the radial distance from the crack tips; see, e.g., Williams [16]. The
scattered field satisfies the radiation condition; that is, we have outgoing waves at infinity.
Along the interface the shear stress is zero and the fluid supports no shear; thus s1'3' = 0
on x'3 =0. Continuity of normal stress and displacement on the interface leads to
[s3'3']= [u3']=0 on x'3 =0. The notation [u] denotes the jump
u(x1, x3 =0+)− u(x1, x3 =0−).

The displacement jump across the crack faces is not known and is denoted by

Ca (x1)= [ua (x1, 0)], =x1=Q a, a=1, 3. (3.1)

The aim of the following is to determine an integral equation for this displacement jump;
once this jump is found, the scattered fields are related to integrals involving this quantity.

Figure 3. The incident wave fields.



. . 348

The total field is split into incident and scattered pieces, so that utotal = uin + usc, with
similar representations for the stresses. The integral equations are formulated in terms of
the scattered field. The incident fields are taken to be either plane elastic body waves, P
or S waves, or a compressional plane wave in the fluid: here it is called an F wave, or an
incident Schölte wave.

Utilizing the reciprocal theorem

gV

(sij,ju*i − s*ij,jui ) dV=gS

(siju*i − s*ij ui )nj dS (3.2)

that relates two independent states, the starred and unstarred fields, within a volume V
with surface S (nj is the outward pointing normal) the following integral representation
for the scattered field at a point (p1, p3) within either the solid or fluid is found:

usc
k (p1, p3)=g

a

−a

sG
i3;k(x1, 0; p1, p3)[usc

i (x1, 0)] dx1. (3.3)

The summation convention is adopted over repeated suffices. The notation sij,j is used to
represent differentiation of sij with respect to xj , whereas the stress tensor sG

ij;k is the Green
function associated with point forces in the x1, x3 directions; i.e., perpendicular or parallel
to the crack faces. It is the Green’s state following from the solution of

sG
kj,j(x; p)+ rv2uG

k (x; p)=−fkd(x− p), (3.4)

where fk is the unit vector. The reciprocal theorem is used with the scattered field as one
state and using a solution associated with the Green’s state as the other; the Green function
is given explicitly in Appendix C. In equation (3.4) above, the delta function is the
two-dimensional delta function and the term [usc

i (x1, 0)] that occurs in equation (3.3) is the
unknown jump in the displacement induced by the incident field across the crack faces.
Integro-differential equations for these terms, written from now onwards as Ci (x1), are
found by substituting equation (3.3) into the constitutive relation (2.1) and then taking
the limit as p3:0. In conjunction with the stress free crack faces condition, the
integro-differential equations are

−sin
i3(p1, 0)= ldi3

1

1pk g
a

−a

sG
j3;kCj dx1 + m

1

1p3 g
a

−a

sG
j3;iCj dx1 + m

1

1pi g
a

−a

sG
j3;3Cj dx1 (3.5)

for i=1, 3 and as p3:0 for =x1=Q a. The argument for the stresses is (x1, 0; p1, p3) and
that of C is (x1). These integro-differential equations are treated by expanding the
unknowns as a sequence of Chebyshev polynomials; that is,

Ca (x1)=
4
i

s
a

n=1

aa;ncn (x1), where cn (x1)=6cos (n arcsin (x1/a))
i sin (n arcsin (x1/a))

n odd,
n even,

(3.6)

for a=1, 3 where the aa;n are to be determined. These are the natural eigenfunctions and
incorporate the correct edge behaviour.

Both sides of equation (3.5) are multiplied by the complex conjugate of a term of
equation (3.6) and integrated over the crack faces; complex conjugates are denoted by an
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overbar. Recalling that the Green function is represented in Appendix C as a Fourier
transform, all of the integrations over the crack faces are done analytically using

g
a

−a

c�m (x1) eikx1 dx1 =
pm
k

Jm (ka) (3.7)

and related integrals; the Jm (ka) are Bessel functions of the first kind. This sequence of
operations yields the set of simultaneous equations

bi;m = s
a

n=1

Kij;mnaj;n , m=1, 2, 3, . . . (3.8)

and i=1, 3. The kernel functions Kij;mn are given as integrals involving Bessel functions
in Appendix B. The left side is known in terms of the incident field

bi;m =−
1
mp g

a

−a

sin
i3(x1, 0)c�m (x1) dx1 for i=1, 3. (3.9)

For the incident plane and surface waves this integral is evaluated explicitly and is given
in Appendix D. For more general incident fields due, say, to a line source in the fluid, this
integral must be done numerically. The integrals in the kernel functions are manipulated
so that they can be performed using standard numerical integration routines; this is
discussed in Appendix B. The sum in equation (3.8) is truncated at some value of N, chosen
so that the relative difference between the variables of interest is less than a specified error.
The matrix inversion to identify the aj;n is performed using standard Linpack routines. Once
these aj;n are known, then Ci is identified and the scattered field in equation (3.3) is now
known. These representations contain the Green function explicitly as an inverse Fourier
transform; hence the far field form of the scattered fields is easily deduced. In addition,
this is convenient, as one can take advantage of previous transform analyses of similar
Green’s functions [17] to extract the non-uniform behaviour that occurs in the
neighbourhood of the Rayleigh angle for 1�k0r�1/o2, although we shall not present those
results here.

4. RESULTS

In this section the scattered fields and stress intensity factors are discussed for waves
incident upon cracks either parallel to, or perpendicular to, the interface. Numerical results
are available for other angles and these are to be presented elsewhere. The far field
scattering coefficients are normalized, and the functions

G�P (f)=
v(l+2m)
16p[Pbody ]

=GP (ui , f)=2, G�S (f)=
vm

16p[Pbody ]
=GS (ui , f)=2, (4.1)

G�F (f')=
vlf

16p[Pbody ]
=GF (ui , f')=2 (4.2)

are used in the figures showing far field scattered wave patterns. The proportion of the
total time average power converted to body waves is [Pbody ]—see equation (5.13)—and the
functions GP,S,F are the directivities for the scattered cylindrical waves defined in section
5.1 and given explicitly in Appendix D. Hence G�P,S,F (f) are the directivity gains along a
ray. The power converted to body waves depends upon the incident wave and material
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parameters: to enable comparison between figures involving the G� , the value of
16Pbody /v(l+2m)=PB is given for each figure.

The parameters ksa, d and o will be varied. The first set of material parameters taken
are kp = 1

2ks , k0 =3ks . These are typical of metal–water combinations; that is, of solids with
relatively high densities and wave speeds relative to the fluid. For instance, for
aluminium–water, aluminium has a density of 2698 kg/m3 and longitudinal and shear wave
speeds of 6374 m/s and 3111 m/s respectively (and would, if the water was replaced by a
vacuum, have a Rayleigh wave speed of 2905·9 m/s. Water has a density of 1000 kg/m3

and a longitudinal wave speed of 1480 m/s; the Schölte wave speed is 1476·7 m/s. Note
that the Schölte wave speed is very close to the compressional wave speed of the fluid. For
the aluminium–water combination, o=0·08606. For kp = 1

2ks and k0 =3ks the Rayleigh
wave speed (in the absence of the fluid) is kr =1·0723ks : if o=0·08, then ksch =1·00075k0.

The second set of material parameters used are as follows: kd =2ks /3, k0 =4ks /3,
o=0·3. This implies that r=5rf /3, kr =1·12ks and ksch =1·068k0. These are more typical
of rock–water combinations; for instance, for sandstone–water, cd =2920 m/s and
cs =1840 m/s, the material parameters being taken from Briggs [18], and cr =1677 m/s
with csch =1385 m/s.

These two different sets of material parameters will demonstrate the effect of light fluid
coupling (the water–metal case) and moderate fluid loading (the rock–water case). The
magnitude of the coupling is crucial to the form of the scattered field.

In the following discussions, critical angles will be discussed; see Figure 1. In the solid
a head wave is generated and the wavefronts propagate into the solid where the wavefront
normals subtend angles 2sin−1 (cs /cd ) to the x3-axis. In the fluid, two head waves are
generated by the shear and compressional waves in the solid: these propagate into the fluid
and the wavefront normals subtend angles 2ud

cr, where ud
cr =sin−1 (c0/cd ), and 2us

cr, where
us

cr =sin−1 (c0/cs ) to the −x3-axis. In addition, for small o, the Rayleigh wave is perturbed
into a leaky Rayleigh wave. This leaky Rayleigh wave sheds energy into the fluid along
angles 2ur

cr, where ur
cr =sin−1 (c0/cr ) (see, for instance, Brekhovskikh [19]); these are known

as the Rayleigh angles. A detailed discussion of these wavefronts for transient disturbances
is contained in Craster [20]. The critical angles are important, as the dominant features
of the directivity patterns involve beam formation along these angles.

The stress intensity factors characterize the near crack tip stress fields [16]. Following
Van der Hijden and Neerhoff [4], the displacement jumps near the crack tips are

Cl (x1)0
2(1− n)

m
z2K2

j (a3 x)1/2 as x1:2a (4.3)

if l=1, j=2, and if l=3, j=1, with n being the Poisson ratio; and with an appropriate
normalization of the stress intensity factors (see reference [21]), K2

j is

=k2
j == =K2

j =
(l+2m)kpa1/2 (4.4)

for an incident P wave. The same notation is used for incident F or Schölte waves. In the
case of S waves, m replaces (l+2m) and S replaces P. The mode 1, K2

1 , stress intensity
factors characterize the opening tensile stresses at the crack tips and the mode 2, K2

2 , stress
intensity factors characterize the shear stresses at the crack tips.

In terms of the coefficients aa;n , these are concisely given by

=k2
j == 2m

kpa(l+2m)(1− n) b san=1

i(2i)n+1nal;nb. (4.5)
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Figure 4. The stress intensity factors for a crack perpendicular to the interface with an incident plane S wave,
ksa=3 and ui =0. The coupling parameters are o=0 (——) and o=0·3 (----).

In the case of incident elastic body waves, for small o, the presence of the fluid has a
minimal effect upon the stress intensity factors. This concurs with the general idea
underlying an asymptotic light fluid loading approach (see Craster [22]); that is, the elastic
and fluid problems can in many situations be separated, solved independently and then
matched together. In Figure 4 are shown the stress intensity factors when a crack
perpendicular to the interface is subject to an incident S wave along ui =0, ksa=3 and
with varying d/a for o=0 and 0·3. Only the shear stress intensity factors appear in this
figure, as there is no opening tensile loading upon the crack. For o=0, this figure appears
in reference [4].

In Figure 5 are shown the stress intensity factors generated by an incident compressional
wave from the fluid for a perpendicular crack with ksa=3, o=0·08, d/a=1·5 and a
varying angle of incidence u'i . The large peaks occur when u'i is one of the critical angles.
For this example, ur

cr =0·37, us
cr =0·34 and ud

cr =0·17; this suggests that the largest
interaction between the incident wave and crack occurs when the wave is incident along
these angles. As d/a decreases, these stress intensity factors increase: the intensity factors
at x1 = a ultimately tend to infinity as d/a:1.

The situation in which the crack is parallel to the surface and d/a is small is interesting,
as resonances are detected and, as shown, in the absence of any fluid [5, 6] these are related
to Lamb waves trapped between the crack and free surface. A related phenomenon occurs
with the addition of the fluid and will be treated in detail elsewhere.

4.1.      (–)
In this section, the parameters appropriate for a typical metal–water interface as

described earlier are taken. Incident P and S waves generate the scattering patterns shown
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in Figures 6–13. Initially, cracks parallel to the interface are considered: unless otherwise
stated, the parameters taken are ksa=3, d/a=0·5 and o=0·08. In the figures for
scattering patterns, the functions G�P,S,F are plotted, where f and f' are taken in the same
sense as ui , u'i in Figure 3. In Figures 6–13, the axes are x'1 , −x'3 ; the choice of co-ordinate
systems earlier has the fluid in x'3 Q 0 and the solid in x'3 q 0, so in these figures the fluid
is above the solid. The solid line in the fluid is the directivity gain for the F wave and the
solid/dashed lines in the solid are the directivity gains for the S and P waves respectively.

In Figure 6 an incident plane P wave along ui = p/4 creates the scattering pattern, and
distinctive beaming occurs in the fluid along one of the Rayleigh angles u'= ur

cr (one peak
is off the figure and is at (−4·2, −11·0)), together with other peaks that are of a smaller
magnitude. The sharpest of these smaller peaks in G�F occurs along u'=−ud

cr; this is
generated by the head wave associated with the compressional wave in the solid. Similarly,
the sharp peak in G�S is generated by the head wave in the solid. The directivity gain G�P

shows no particularly strong features; this is typically the case in most of the figures. It
is interesting to note that the beam formation along the other Rayleigh angle, u'=−ur

cr,
is quite weak and smaller than that due to the head wave; this is perhaps unexpected. As
the fluid loading is light this is rationalized by considering the same problem in the absence
of the fluid and examining the scattered power converted into Rayleigh waves. With no
fluid present, and taking the same incident wave, it turns out that a larger fraction of the
total scattered power goes into the Rayleigh wave propagating towards x'1 =−a (6%)
rather than in the direction x'1 =+a (0·3%). When the fluid is introduced, the beaming
is in part generated by the leakage of energy from the Rayleigh waves into the fluid; thus
this generates the larger beam along u= ur

cr. The directivity gains in the solid found in the
absence of the fluid are, as one would naturally expect in the light fluid loading limit, very

Figure 5. The stress intensity factors for a crack perpendicular to the interface subjected to an incident F wave
with ksa=3, d/a=1·5, o=0·08 and a varying angle of incidence. ——, =k+

1 =; ——, =k+
2 =; ----, =k−

1 =; · · · · , =k−
2 =.
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Figure 6. The directivity gains for an incident P wave along ui = p/4, ksa=3, o=0·08 and d/a=0·5 (PB =44).
——, S; ----, P; ——, F.

close to those found when o=0·08. For the incident P wave along ui = p/4, these are
shown in Figure 7.

Increasing d/a leads to a larger response in the solid: for d/a=1, ksa=3, o=0·08 and
ui = p/4, the directivity gains are shown in Figure 8. Note that the beam formation is now
dominant along ui = ur

cr; using the rationale above, in the absence of the fluid 2·5% of the
scattered power is converted to Rayleigh waves propagating in the +x1 direction versus
1% propagating in the −x1 direction. Returning to the d/a=0·5 case, as one alters the
angle of incidence towards ui =0, the beam along u'=−ur

cr becomes stronger, until it is
of the same magnitude as that along the other Rayleigh angle. The scattering patterns for
ui =0 are shown in Figure 9.

It might be envisaged that incident S waves would generate a weaker scattered field in
the fluid due to the zero shear stress boundary condition at the interface. However, as we
can see from Figure 10, this is not necessarily the case. Note that the main beam formation
is now along u'=−ur

cr; that is, it does not behave in a similar manner to the incident P
wave with the same ui . The rationale is the same as that above: considering the same
problem in the absence of the fluid, a substantial proportion of the power is converted
into a Rayleigh wave propagating in the +x'1 (23%) direction (the peak is off the figure
and is at (13·9, −36·2)) and this creates the dominant beam; a not inconsequential fraction,
4%, is converted into Rayleigh waves in the direction −x'1 and this gives the lesser beam
along u'= ur

cr.
Now consider incident plane waves from the fluid. If k0 sin u'i q ks then the transmitted

waves in the solid are inhomogeneous plane waves, the amplitude of which decays
exponentially with depth. Hence a strong scattering pattern is only expected for cracks
close to the interface (d/aE 1): as the waves are confined to the neighbourhood of the
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interface there are strong interactions for cracks near to the interface. The maximal
response is for u'i = ur

cr; that is, along the Rayleigh angle. A wave from the fluid along
u'= p/4 is shown in Figure 11: the beam formation along the Rayleigh angles is strongly
dominant with little response in the solid, and a considerable fraction, 69%, of the
scattered power is converted into the scattered wave in the fluid; thus this is a highly
efficient method of imaging subsurface cracks. For k0 sin u'i E ks the beam formation along
the Rayleigh angles is still dominant, but less pronounced than, say that of Figure 11; the
weakest response is for u'i =0.

In the situations considered above, almost no scattered power is converted into Schölte
waves; this is in contrast to the power conversion to Rayleigh waves, when the fluid is
absent, when there can be relatively large power conversion to Rayleigh waves, particularly
for small ksa. Schölte waves are thus hard to excite unless the crack is very close to the
interface: in this case, resonance behaviour due to trapped Lamb modes, similar to
references [5, 6], also may occur, and this issue will be dealt with elsewhere.

To demonstrate the effect of changing the crack orientation, a crack is now considered
to be perpendicular to the interface. The relevant parameters in Figures 12 and 13 are
ksa=3, d/a=1·5 and o=0·08. The results for incident P and S waves are slightly different
from the parallel crack case. Once more, we consider incident plane waves along ui = p/4:
for an incident plane P wave, the directivity gains are shown in Figure 12. Note that the
beam formation in the fluid along the head wave angle associated with the solid
compressional wave is almost of the same magnitude as that associated with Rayleigh
wave. In the solid the beaming occurs along the critical angle associated with the head
wave.

Figure 7. The directivity gains in the solid for an incident P wave along ui = p/4, ksa=3 and d/a=0·5. ----,
o=0·0 (PB =40); ——, o=0·08. The directivity gains G� s are the larger curves and G�p the smaller curves.



8

6

–10
–8

x'1

–x
' 3

–4

4

2

0

–2

–6

–8

–2 0 2 4–6 –4 6

     355

Figure 8. The directivity gains for an incident P wave along ui = p/4, ksa=3, o=0·08 and d/a=1·0 (PB =62).
——, S; ----, P; ——, F.

The scattered fields for an incident S wave along ui = p/4 are symmetric for the specific
choice of material parameters taken here; this angle of incidence is special, as the shear
loading on the crack is then zero, and the crack is only subjected to a tensile opening stress
and this leads to the symmetric scattered field. If one alters the angle of incidence to say,
ui = p/3, strong beam formation along the Rayleigh angles is once more evident.

It is interesting to note that a purely symmetric scattered field can also be generated,
for the same reason, if the crack is imaged by an incident F wave along
u'i =2sin−1 (ks /z2k0). For an incident plane F wave along u'i = p/4, the scattered fields
are shown in Figure 13; these gains are very similar to the parallel crack case shown in
Figure 11, although the value for the total scattered power is quite different.

The far field scattering patterns shown above demonstrate considerable acoustic
beaming within the fluid. It is also of interest to assess the proportion of scattered power
that is converted into scattered power in the fluid. In Figure 14, the fraction of scattered
power converted into P, S, F and Schölte waves for an incident plane P wave at ui = p/4,
for ksa=3, o=0·08 and varying d/a, upon a perpendicular crack is shown; a considerable
fraction of the scattered power is converted to power within the fluid and the fraction
converted to Schölte waves is so small that it does not show in the figure. Thus a crack
is a reasonably efficient scatterer of power into the fluid provided that the crack is close
to the surface and it is hard to excite Schölte waves. In Figure 15 is shown the power
conversion for the same case, except that now o=0. It is clear that the effect of fluid
coupling is to convert the power that was carried by Rayleigh waves, and a proportion
of that carried by elastic waves, into power in the fluid. Note that the total scattered power
decreases as d/a increases, and that Figures 14 and 15 are showing the fraction of this
converted to the different types of waves.
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4.2.    (–)
Far field directivities are now shown for the second set of material parameters, that are

more relevant for rock–water systems. The coupling parameter o is now increased to 0·3
and the solid has a lower compressional wave speed, with the shear wave speed greater
than the compressional wave speed of the fluid; that is, kd =2ks /3, k0 =4ks /3. In Figures
16 and 17 are shown the directivities for incident P and F waves upon a crack parallel
to the interface. In Figures 16 and 17, the two sharp peaks in the fluid directivity are formed
along the critical angles associated with the head waves. Characteristic beams are now
formed along these angles for the incident P and F waves instead of along the Rayleigh
angles. These beams are not as dominant as those found in the previous section. The
coupling parameter takes the value o=0·3 in these figures, and ksa=3 and d/a=0·5 once
again. Increasing the coupling leads to an increased response in the solid for incident F
waves and a fundamental change in the nature of the scattering patterns. It is worth noting
that beaming along the Rayleigh angles is not present for these material parameters for
all the incident waves at the same o as in the previous section; that is, for o=0·08. For
instance, for the material parameters taken here, beaming along the Rayleigh angles due
to an incident plane P wave begins to occur for o0 0·04. The criterion for beaming to occur
is that

b ok4
sk0(k2

r − k2
p)1/2

kdkrR'(kr )(k2
0 − k2

r )1/2 b�1, (4.6)

Figure 9. The directivity gains for an incident P wave along ui =0, ksa=3, o=0·08 and d/a=0·5 (PB =54).
——, S; ----, P; ——, F.
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Figure 10. The directivity gains for an incident S wave along ui = p/4, ksa=3, o=0·08 and d/a=0·5
(PB =29). ——, S; ----, P; ——, F.

which depends upon the material constants. A similar change in the beaming occurs when
the orientation of the crack is altered: scattering patterns for incident F and P waves upon
a perpendicular crack are shown in Figures 18 and 19. The peaks in the fluid in Figure
19 are along the critical angle associated with the shear wave speed.

5. RECIPROCITY AND POWER FLOW THEOREMS

The wave–crack interaction problem considered in the main body of this paper contains
several complicated manipulations and the numerical evaluation of the kernel functions
is a slightly delicate operation: thus it is vital to have independent checks upon the
numerical analysis. These do not appear to have been utilized by others considering
fluid–solid interactions. Reciprocity and power flow theorems provide valuable consistency
checks upon the numerical work; they are not independent checks upon the accuracy to
which the physical problem is actually solved—see the comments at the end of this section.
These theorems are also of interest in their own right.

5.1.  

Reciprocity theorems relate the scattered far field coefficient associated with the
scattered cylindrical wave generated by one type of incident wave to the scattered far field
coefficient generated by another incident wave; the incident waves here are either plane
body or interfacial waves. Typically, one can relate the scattered S field, say, generated
by an incident plane P wave to the scattered P field generated by an incident plane S wave;
and similarly for the other waves of interest including the interfacial wave. Hence they
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provide useful checks upon the numerical analysis, for an obstacle beneath a solid
half-space [13] gives the required relations (see also reference [14]). The addition of a fluid
overlying the solid leads to some changes; there is now an additional wave due to the fluid
half-space and the Schölte wave replaces the Rayleigh wave.

Consider a stress free compact void within the elastic solid, at a finite distance from the
interface and with boundary L. The assumption that the obstacle is a stress free void is
not necessary for the derivation, but is merely convenient. The results also hold for an
obstacle that is a reciprocal linear elastic material either rigidly or smoothly bonded to the
surrounding elastic material. In addition, the obstacle can also touch the interface, or one
could consider many obstacles a finite distance from the origin. For a void the scattered
field within the solid or fluid at a point x' is given by

usc
k (x')=gL

sG
ij;k(x; x')usc

i (x)nj dS(x). (5.1)

The integral L is closed if the obstacle is within the solid and open if it touches the
boundary. The Green function is given by solutions to equation (3.4), and for a crack
equation (5.1) reduces to equation (3.3). The far field in the solid is

urad
a (r, x̂')=

i
4 0 2

pkpr1
1/2

exp(ikpr−ip/4)PP (x̂')x̂'a

+oag2
i
4 0 2

pksr1
1/2

exp(iksr−ip/4)PS (x̂')x̂'g (5.2)

Figure 11. The directivity gains for an incident F wave along u'i = p/4, ksa=3, o=0·08 and d/a=0·5
(PB =2·3×10−2). ——, S; ----, P; ——, F.
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Figure 12. The directivity gains for an incident P wave along ui = p/4, ksa=3, o=0·08 and d/a=1·5
(PB =57). ——, S; ----, P; ——, F.

and in the fluid

urad
a (r, x̂')=

i
4 0 2

pk0r1
1/2

exp(ik0r−ip/4)PF (x̂')x̂'a , (5.3)

where the PP,S,F (x̂') are the directivity functions. The interfacial Schölte wave in the solid
is

usurf
a (x')=H2

P kPSch2
a exp(ikpkPSch2 ·x')+H2

S oag2kSSch2
g exp(ikskSsch2 ·x'); (5.4)

there is a similar wave in the fluid. The wavenumber vectors k are defined in
Appendix A. In this paper, surface waves incident from x'1 =−a are considered and the
superscripts + and − denote the amplitudes travelling in the +x'1 and −x'1 directions
respectively. In the absence of the fluid, for incident Rayleigh waves, the above is valid
with Sch replaced by R. The HP,S are the far field amplitudes associated with pieces of the
surface wave that could each be associated with P- and S-driven pieces. This split is
somewhat unphysical and HP and HS are related; thus only results associated with HP are
considered.

Each of the far field directivity functions is defined as an integral over L, such as

PP (x̂')=gL

ua (x)1abBP
b (x; x̂') dx, (5.5)
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with identical expressions for PS,F , with S, F replacing P. The far field amplitudes, HP,S ,
also satisfy similar expressions. The function 1abBP

b (x; x̂') is the far field directivity for the
stress fields associated with the Green function (see Appendix C). The outward unit normal
to the boundary L of the obstacle, that lies in the elastic solid, is n. Using the reciprocal
theorem with two independent states, A and B, as scattered fields it is clear that the
following identity holds:

gL

uA
i s

B(in)
ij nj dS=gL

uB
i s

A(in)
ij nj dS. (5.6)

Substituting the incident fields due to P, S, F or Schölte waves into this expression, the
incident plane P, S or F waves are taken to be in the direction k= âP,S,F in state A and
k= b
 P,S,F in state B, with amplitudes A and B respectively, and using the far field
expressions the reciprocity relations are found. The directivity functions PP,S,F (x̂') are
written as GP,S,F (u, f), where the first angle is the angle of incidence associated with the
incoming plane wave and the second angle is the angle of observation. For incoming
surface waves, the first angle is not required. As the incident waves are taken to be of
differing types, a superscript, P, S, F or Sch, is used to denote the type of incident wave.
For instance, GP

S (u, f) denotes the far field directivity for the scattered cylindrical S wave
observed along f and generated by an incident P wave along u. In the case of incident
surface waves, GSch

P (f) denotes the far field directivity for the scattered cylindrical P wave
for an incident Schölte wave observed along f.

Figure 13. The directivity gains for an incident F wave along u'i = p/4, ksa=3, o=0·08 and d/a=1·5
(PB =1·6×10−3). ——, S; ----, P; ——, F.
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Figure 14. The fraction of scattered power converted to P (——), S (----) and F (——) waves.

For two incident P or S waves, or one incident P wave and one incident S wave, the
reciprocity relations are the same as those for an infinite domain [12], and are

GP
P(u, f)=GP

P(f, u), GS
S(u, f)=GS

S(f, u), GS
P(u, f)=

k2
p

k2
s
GP

S (f, u), (5.7)

respectively. These relations are given for incident waves of unit amplitude. Each scattered
far field is related to another if each is viewed in the negative direction of the incident
direction of propagation of the other.

An incident Schölte wave upon an obstacle generates scattered P, S and F waves. When
viewed along an angle a, these are related to the amplitude of the scattered Schölte wave
generated by incident plane waves along a. The relations are

GSch
P (a)=

gp (k)
(2k2

sch − k2
s )2

dS(k)
dk bk= ksch

H−P
P (a), (5.8)

k2
p

k2
s
GSch

S (a)=
gp (k)

(2k2
sch − k2

s )2

dS(k)
dk bk= ksch

H−S
P (a), (5.9)

okp

k0
GSch

F (a)=
gp (k)

(2k2
sch − k2

s )2

dS(k)
dk bk= ksch

H−F
P (a). (5.10)
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The functions gp (k) and S(k) are defined in Appendix A. Similarly, considering an incident
plane F wave and incident F, P and S waves, then

GF
F(u, f)=GF

F(f, u),
okp

k0
GP

F (u, f)=GF
P(f, u),

ok2
s

k0kp
GS

F(u, f)=GF
S(f, u). (5.11)

The angles in the fluid are given in the same sense as ui in Figure 3. The later two relations
involve the ratio of densities via o; recall that o= rfkp /rk0.

5.2.   

Another particularly useful application of the reciprocal theorem is to analyze the time
averaged power scattered by the crack, and to relate this to a combination of the far field
scattering coefficients. As there is no power loss in the material, the total time averaged
power flow through a surface S enclosing the obstacle is zero. Thus, utilizing the reciprocal
theorem with one state taken to be complex conjugate of the other,

Re 0iv gS

ūasabnb dS1=0. (5.12)

Taking the surface S to infinity and manipulating the above relation so that it only involves
the scattered fields allows the following power balance relations involving the far field
directivities and Schölte wave amplitudes to be determined.

Figure 15. The fraction of scattered power converted to P (——), S (----) and Rayleigh (——) waves.
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Figure 16. The directivity gains for an incident P wave along ui = p/4, ksa=3, o=0·3 and d/a=0·5 (PB =73).
——, S; ----, P; ——, F.

For an incident P wave,

0v(l+2m)
16p g

p

2

−
p

2

=GP
P(ui , f)=2 df+

vm

16p g
p

2

−
p

2

=GP
S (ui , f)=2 df+

vlf

16p g
p

2

−
p

2

=GP
F (ui , f')=2 df'1

+0iv(l+2m)
4

S'(k)gp

(2k2 − k2
s )2 bk= ksch

(=H−P
P (ui )=2 + =H+P

P (ui )=2)1
=

v

2
Im ((l+2m)RPPGP

P(ui , −ui )+ mRSPGP
S (ui , −up

s )+ lfTFPGP
F (ui , −up

f ))=k= kp sin ui ,

(5.13)

where ks sin up
s = kp sin ui and k0 sin up

f = kp sin ui . The reflection and transmission
coefficients are defined in Appendix A. The top line of equation (5.13) is the body wave
contribution to the time averaged scattered power, Pbody in equations (4.1) and (4.2), and
each integral represents the power converted to cylindrical P, S and F waves respectively.
The next term represents the surface wave contribution. These are, perhaps surprisingly,
related to a combination of the far field scattering coefficients. The coefficients in the combi-
nation of the far field scattering coefficients are related to the reflection and transmission
coefficients for an incident plane P wave on the interface. These relations allow us to
evaluate the proportion of the total scattered time averaged power that is converted into
each type of wave. In the absence of the fluid, and after setting ksch = kr in the above, the
results found in reference [13] are recovered; see also Gregory [23]. For o=0, the terms
on the right side of equation (5.13) are the analytical continuation of Im (GP

P(ui , −u'i )) in
reference [13]—that is, where u'i is in the fluid—into the physical domain.
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Similarly, one can deduce for an incident S wave that

0v(l+2m)
16p g

p

2

−
p

2

=GS
P(ui , f)=2 df+

vm

16p g
p

2

−
p

2

=GS
S(ui , f)=2 df+

vlf

16p g
p

2

−
p

2

=GS
F(ui , f')=2 df'1

+0iv(l+2m)
4

S'(k)gp

(2k2 − k2
s )2 bk= ksch

(=H−S
P (ui )=2 + =H+S

P (ui )=2)1
=

v

2
Im ((l+2m)RPSGS

P(ui , −us
p)+ mRSSGS

S(ui , −ui )+ lfTFSGS
F(ui , −us

f ))=k= ks sin ui ,

(5.14)

where kp sin us
p = ks sin ui and k0 sin us

f = ks sin ui ; for some angles of incidence the angle
us

p is complex. For an incident F wave, the power balance is

0v(l+2m)
16p g

p

2

−
p

2

=GF
P(ui , f)=2 df+

vm

16p g
p

2

−
p

2

=GF
S(ui , f)=2 df+

vlf

16p g
p

2

−
p

2

=GF
F(ui , f')=2 df'1

+0iv(l+2m)
4

S'(k)gp

(2k2 − k2
s )2 bk= ksch

(=H−F
P (ui )=2 + =H+F

P (ui )=2)1
=

v

2
Im ((l+2m)TPFGF

P(ui , −uf
p)+ mTSFGF

S(ui , −uf
s)+ lfRFFGF

F(ui , −ui ))=k= k0 sin ui ,

(5.15)

Figure 17. The directivity gains for an incident F wave along u'i = p/4, ksa=3, o=0·3 and d/a=0·5
(PB =14). ——, S; ----, P; ——, F.
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Figure 18. The directivity gains for an incident P wave along ui = p/4, ksa=3, o=0·3 and d/a=1·5 (PB =50).
——, S; ----, P; ——, F.

where kp sin uf
p = k0 sin ui and ks sin uf

s = k0 sin ui ; both angles uf
p and uf

s are complex for
some angles of incidence. For an incident Schölte wave,

0v(l+2m)
16p g

p

2

−
p

2

=GSch
P (ui , f)=2 df+

vm

16p g
p

2

−
p

2

=GSch
S (ui , f)=2 df

+
vlf

16p g
p

2

−
p

2

=GSch
F (ui , f')=2 df'1+0iv(l+2m)

4
S'(k)gp

(2k2 − k2
s )2 bk= ksch

(=T=2 + =R=2 −1)1=0.

(5.16)

The transmission and reflection coefficients for Schölte waves are H+Sch
P =T−1 and

H−Sch
P =R. The power balance relations are a particularly useful check, as they relate the

integral of the directivities to the scattered directivities along a ray.
Both the reciprocity and power flow theorems were used as a check upon the numerical

results presented in earlier sections.
A note of warning regarding both reciprocal and power flow theorems as a check upon

numerical calculations is worth emphasizing. These theorems do not necessarily provide
an accurate check upon how well a physical problem is solved. The numerical approach
utilized above satisfies reciprocity and the power balance analytically.

As an example, consider the scattering of incident plane waves by a finite length crack
in an infinite elastic medium and solve the integral equations by using an expansion of
the unknowns in a sequence of N Chebyshev polynomials; cf. reference [11]. For ksa=3
and n= 1

3, a relative accuracy of O(10−4) in the calculation for the stress intensity factors
due to an incident P wave is achieved using N=8 and N=10; for N=8 the power flow
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Figure 19. The directivity gains for an incident F wave along u'i = p/4, ksa=3, o=0·3 and d/a=1·5
(PB =23). ——, S; ----, P; ——, F.

calculation is accurate to O(10−6), with no difference in the functions related via reciprocity
due to differing incident fields. However, if one takes, say, N=2, the calculated stress
intensity factors are up to twice that evaluated at N=8, but the power flow and reciprocity
relations are still satisfied to the same accuracy as before! Thus the power flow and
reciprocity relations are an internal consistency check upon a numerical procedure, but
do not provide a completely independent check upon the accuracy to which the physical
problem is solved.

6. CONCLUSIONS

The wave–crack interaction problem for an arbitrarily orientated crack is solved using
an efficient numerical procedure. The formulation and analysis is for a single crack in an
infinite elastic half-space. Material parameters have been chosen to be typical of
metal–water and rock–water interfaces, thus representing light and moderate fluid
coupling, and a variety of results are presented. In this paper results are presented for
cracks either parallel to, or perpendicular to, the interface. The main results are as follows.

1. The stress intensity factors for incident waves from the solid, in the limit of light fluid
loading, are not changed substantially from those found in the absence of the fluid. For
an incident plane wave from the fluid, large responses are found when the angle of
incidence is the Rayleigh angle, suggesting that considerable wave–crack interaction occurs
for waves incident along the Rayleigh angle.

2. The far field scattering directivities are analyzed and it is shown that there are
effectively two regimes. In the light fluid coupling case, beam formation along the Rayleigh
angles is dominant. As the coupling increases, other beams are formed along critical angles
associated with head waves. For sufficiently large coupling, these then become dominant.
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3. Reciprocity and power flow theorems are deduced and these are used as checks upon
the numerical work. In addition, the power flow results allow the partition of the scattered
power into its constituent parts to be analyzed. For waves incident from the fluid, a
considerable proportion of the scattered power is converted to scattered waves in the fluid
and in general very little is converted to Schölte waves.
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APPENDIX A: TRANSFORM DEFINITIONS USED IN THE TEXT

gq (k)= (k2
q − k2)1/2 for q= d, s, 0,

R(k)=4k2gs (k)gp (k)+ (2k2 − k2
s )2,

S(k)=4k2gs (k)gp (k)+
ok0gpk4

s

kpg0
+ (2k2 − k2

s )2,

V=−
2kgpks

kp (2k2 − k2
s )

, Vf =−
k2

sgpk0

kpg0(2k2 − k2
s )

.

Reflection and transmission functions:

RPPS(k)=4k2gs (k)gp (k)+
ok0gpk4

s

kpg0
− (2k2 − k2

s )2,

RPSS(k)=−4kgskp (2k2 − k2
s )/ks , RSPS(k)=4kgpks (2k2 − k2

s )/kp ,

RSSS(k)=4k2gs (k)gp (k)−
ok0gpk4

s

kpg0
− (2k2 − k2

s )2,

RFFS(k)=4k2gs (k)gp (k)−
ok0gpk4

s

kpg0
+ (2k2 − k2

s )2,

TFSS(k)=−4kksk0gsgp /g0, TSFS(k)=4okk3
sgp /kp ,

TFPS(k)=−2gpk2
sk0(2k2 − k2

s )/kpg0, TPFS(k)=−2o(2k2 − k2
s )k2

s .

The wavenumber vectors:

kF =
1
k0

(k, g0), kFF =
1
k0

(k, −g0), kPF =
1
kp

(k, gp ), kSF =
1
ks

(k, gs ),

kP =
1
kp

(k, −gp ), kPP =
1
kp

(k, gp ), kSP =
1
ks

(k, gs ), kPSch2 =
1
kp

(k, gp )=k=2ksch ,

kS =
1
ks

(k, −gs ), kSS =
1
ks

(k, gs ), kPS =
1
kp

(k, gp ), kSSch2 =
1
ks

(k, gs )=k=2ksch .

APPENDIX B: KERNEL FUNCTIONS

The rotation from the x' into the x co-ordinate system introduces the crack inclination
angle u into the transform representations of the Green function when it is used in the
integral equations. A concise notation is k2 = k cos u2 g sin u, g2 = g cos u3 k sin u. In



     369

addition, the notation Cp2
1 =32k2

p g2
p , Cp2

3 = k2
s −2(k2

p )2 and Cs2
1 = (k2

s )2 − (g2
s )2,

Cs2
3 =32k2

s g2
s is also used. The kernel functions are deduced to be

Kab;mn =(−1)m+ n gC

Lab;mn (k)/k2
s dk,

where

Lab;mn (k)= dabR(k)
Jm (ka)Jn (ka)

gak2

+
RPPCp+

a Cp−
b

gpk+
p k−

p
Jm (ak+

p )Jn (ak−
p ) e2igpd +

RSSCs+
a Cs−

b

gsk+
s k−

s
Jm (ak+

s )Jn (ak−
s ) e2igsd

+0kpRSPCp+
a Cs−

b

ksgpk+
p k−

s
Jm (ak+

p )Jn (ak−
s )+

ksRPSCs+
a Cp−

b

kpgsk+
s k−

p
Jm (ak+

s )Jn (ak−
p )1 ei(gp + gs )d,

where g1,3 = gs,p . The path C runs from −a to +a and is indented to lie beneath the pole
and branch points that lie on the positive real axis and above those on the negative real
axis. Superficially, they are identical to the kernel functions derived in reference [4], (as
an aside, this will always be the case for cracks beneath plane solid/solid interfaces—the
only change is in the definition of the reflection terms); however, there is a crucial
difference. The denominator that appears within the reflection coefficients is S(k) rather
than R(k). The former contains six branch points and either two or four zeros depending
upon the precise choice of branch cuts (see the appendix of Craster [24]): the latter has
four branch points and two real zeros. Here the choice of cuts in the upper half-plane is
taken such that they run from +kp,s,0 to +kp,s,0 + ia, with a similar choice for the lower
branch cut. Thus the analysis is slightly more involved than that required in the absence
of the fluid, the pole contribution on the real axis is explicitly evaluated and subtracted
from the integrand. For o�1 the contribution due to the leaky pole is similarly subtracted;
this only becomes necessary for o0 0·01. The remaining integrand is manipulated so that
it runs from zero to infinity and is split into finite pieces from one branch point to another
and finally out to infinity. Each piece is manipulated so that no branch point singularities
remain explicitly within the integrand and then standard numerical techniques—here
Gaussian quadrature with 31 or 51 nodes—yield fast and accurate solutions. This is
considerably faster than deforming the contour around the branch points and integrating
numerically in the complex domain. The Bessel functions are evaluated using an integral
representation: this was found to be faster and more accurate than using recurrence
relation based methods. The Bessel function products in the integrand might appear to
introduce awkward oscillatory behaviour, and techniques designed specifically for such
integrals can be utilized (Lucas [25]). On some integrals this did improve the speed of
calculation; however, the evaluation time is already so short that the extra effort of
programming in these faster methods was not warranted and conventional techniques
suffice. If the crack is either parallel to, or perpendicular to, the interface then considerable
simplifications occur, in addition natural symmetries emerge; thus in these cases the
numerical approach becomes even more efficient.

APPENDIX C: THE GREEN’S STATE

In the text the Green’s state associated with sG
kj,j(x; p)+ rv2uG

k (x; p)=−d(x− p) is
required in x'3 q 0. The displacements uG

i,k(x', p') are uGa
i,k (x', p')+ uGI

i;k (x', p'), where the first
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term is the usual elastic Green function in an infinite domain and the second term takes
account of the interface, and is

uGI
a;b(x', p')=

i
4pm g

a

−a

k2
p

k2
sgp

(kPP
a RPP eikpkPPx' + oabgRSPkSP

g eikskSPx')kP
b e−ikpkPp' dk

+
1
gs

(oag2kSS
g RSS eikskSSx' + kPS

a RPS eikpkPSx') e−ikskSp'obg2kS
g dk. (C.1)

The wavenumber vectors are given in Appendix A. For the integral equation we require
the Green functions relative to the x co-ordinate system: these are found by determining
the potential representations for point forces in the 1', 3' directions and then rotating on
to the 1, 3 system, thus determining the potential representations due to point forces in
the 1, 3 directions. Hence in the solid one finds equation (B2) of reference [4] with the
reflection functions replaced by those of Appendix A of the present paper. In the fluid,

sGI
a3(x1, x3; p1, p3)=−mk0/2rfv

2,

0TPF

kp
Cp−

a ei((gp + g0)d+ x1k
−
p + x3g

−
p ) +

TSF

ks
Cs−

a ei((gs + g0)d+ x1k
−
s + x3g

−
s )1. (C.2)

The far field is

uG(rad)
a;b (x, r, x̂')=

i
4 0 2

pkpr1
1/2

exp(ikpr−ip/4)BP
a (x, x̂')x̂'b

+ obg2
i
4 0 2

pksr1
1/2

exp(iksr−ip/4)BS
a (x, x̂')x̂'g (C.3)

for kp,sr�1, and

urad
a (x, r, x̂')=

i
4 0 2

pk0r1
1/2

exp(ik0r−ip/4)BF
a (x, x̂')x̂'3. (C.4)

The far field cylindrical wave in the fluid only becomes fully developed in the light fluid
loading limit for k0r�1/o2; there is interesting non-uniform behaviour in the
neighbourhood of the Rayleigh angle for 1�k0r�1/o2 [17].

The BP,S,F
a (x, x̂') are given by

BF
a (x, x̂')=−

1
lf

(xPF
a TPF eikpx
 'PF · x + oag2xSF

g TSF eiks x̂'SF · x), (C.5)

BP
a (x, x̂')= (l+2m)−1(x̂'a e−ikp x̂' · x − x̂'PP

a RPP eikp x̂'PP · x − oag2x̂'SP
g RSP eiks x̂'SP · x), (C.6)

BS
a (x, x̂')= m−1(oag2x̂'g e−iks x̂' · x − oag2x̂'SS

g RSS eiks x̂'SS · x − x̂'PS
a RPS eikp x̂'PS · x), (C.7)

with the x̂' as the geometrical counterparts of the wavenumber vectors in Appendix A.

APPENDIX D: INCIDENT AND SCATTERED FIELDS

For an incident P wave with amplitude Ap , the incident field in the solid is

uin
a (x')=AP

a eikpkP · x' +APP
a eikpkPP · x' +ASP

a eikskSP · x' (D.1)



     371

and in the fluid it is

uin
a (x')=AFP

a eik0kFP · x', (D.2)

where

AP
a =Apkp

a , APP
a =ApkPP

a RPP , ASP
a =Apoag2kSP

g RSP , AFP
a =ApkFP

a TFP , (D.3)

with k= kp sin ui . Similarly, for an incident S wave with amplitude As , the incident field
in the solid is

uin
a (x')=AS

a eikskS · x' +ASS
a eikskSS · x' +APS

a eikpkPS · x' (D.4)

and in the fluid it is

uin
a (x')=AFS

a eik0kF · x', (D.5)

where

AS
a =Asoag2ks

g, ASS
a =Asoag2kSS

g RSS , APS
a =AskPS

a RPS , AFS
a =AskFS

a TFS . (D.6)

The forcing function in equation (3.9) is explicitly given by

ba;m =−imAs0Cs+
a

ksk+
s

Jm (ak+
s ) e−igsd +

RSSCs−
a

ksk−
s

Jm (k−
s a) eigsd +

RPSCp−
a

kpk−
p

Jm (ak−
p ) eigpd1,

(D.7)

with k= ks sin ui . For an incident P wave, the expression is the same, but with the roles
of P and S interchanged. For an incident F wave with amplitude Af the incident field in
the solid is

uin
a (x')=APF

a eikpkPF · x' +ASF
a eikskSF · x' (D.8)

and in the fluid it is

uin
a (x')=AF

a eik0kF · x' +AFF
a eik0kFF · x', (D.9)

where

AF
a =AfkF

a , AFF
a =AfkFF

a RFF , ASF
a =Afoag2kSF

g TSF , APF
a =AfkPF

a TPF . (D.10)

The forcing function is

ba;m =−imAf0TSFCs−
a

ksk−
s

Jm (k−
s a) eigsd +

TPFCp−
a

kpk−
p

Jm (ak−
p ) eigpd1, (D.11)

with k= k0 sin u'i . Note that for u'i =2ur
cr , then k=2kr and the transmission coefficients

are O(1) rather than O(o). If us
cr q =u'i =q ud

cr, then the transmitted P wave is an
inhomogeneous wave—that is, it propagates along the interface with exponential decay
with depth—and if =u'i =q us

cr, then both the transmitted P and S waves are inhomogeneous.
For an incident Schölte wave with amplitude Asch , the incident wave in the solid is

uin
a (x')=APSch

a eikpkPSch · x' +ASSch
a eikskSSch · x' (D.12)

and in the fluid it is

uin
a (x')=AFSch

a eik0kFSch · x', (D.13)
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where APSch
a =AschkPP

a , ASSch
a =AschVoag2kSS

g and AFSch
a =AschVfkFF

a , with k=+ksch . The
forcing function is

ba;m =−imAsch0Cp−
a

kpk−
p

Jm (ak−
p ) eigpd +

VCs−
a

ksk−
s

Jm (ak−
s ) eigsd1, (D.14)

with k= ksch . In the absence of the fluid, the case of an incident Rayleigh wave is identical,
but with k=+kr , and no wave in the fluid. The Schölte wave speed is

ksch = k2
s0 1+ o

2(k2
s − k2

d)1
1/2

exp0 1
2p g

ks

kd

tan−1 f1
2 dt

t
+

1
2p g

k0

ks

tan−1 f2
2 dt

t 1. (D.15)

The functions f1 and f2 are

f1 =
4t2(t2 − k2

d)1/2(k2
s − t2)1/2 + ok4

sk0(t2 − k2
d)1/2/kd (k2

0 − t2)1/2

(2t2 − k2
s )2 , (D.16)

f2 =
ok4

sk0(t2 − k2
d)1/2

kd (k2
0 − t2)1/2((2t2 − k2

s )2 −4t2(t2 − k2
d)1/2(t2 − k2

s )1/2)
, (D.17)

and the branch of the inverse tangent is chosen such that 0E tan−1 fE p.
The scattered fields are of the form given in equations (5.2) and (5.3), and the functions

GP,S,F (u, f) are

GP (u, f)=4p
k2

p

k2
s

s
a

n=1

(−1)nn0Cp+
a aa;n

kpk+
p

Jn (ak+
p ) e−igpd +

RPPCp−
a aa;n

kpk−
p

Jn (ak−
p ) eigpd

+
RSPCs−

a aa;n

ksk−
s

Jn (ak−
s ) eigsd1, (D.18)

with k= kp sin f and −p/2EfE p/2. The corresponding shear directivity GS (u, f) is
k2

s /k2
p multiplied by the same expression, with the roles of P and S interchanged within

equation (D.18), and with k= ks sin f. In the fluid the directivity function GF (u, f') is
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with k= k0 sin ui and −p/2Ef'E p/2. The angles f and f' are defined in the same sense
as ui and u'i in Figure 3. The Schölte wave amplitudes are
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with k=2ksch .


